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MOVEMENT OF THE GROUND IN RAYLEIGH WAVES

PRODUCED BY UNDERGROUND EXPLOSIONS

UDC 550.348.425.4V. A. Simonenko. N. I. Shishkin,

and G. A. Shishkina

Analytic representations are obtained for the displacement and stress fields in the Rayleigh surface
wave (R-wave) generated in an elastic half-space by an internal source that produces the same seismic
P -wave as an underground explosion. Oscillograms, particle trajectories, and stresses in the half-
space and on its surface are calculated. Relations for the energy flux in the R-wave are obtained. For
rock salt, the fraction of the explosion energy transferred to the R-wave is estimated. It is established
that this fraction can reach values of about 1% of the total explosion energy if the explosion is a
contained one. As the charge depth is increased, the energy of the R-wave decreases in approximately
inverse proportion to the depth.
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Introduction. Elastic surface Rayleigh waves (R-waves) [1] result from dynamic actions on the surface of
elastic bodies. In structures of small dimensions, they are used as ultrasonic waves. Rayleigh waves are also observed
in large structures and engineering constructions. In addition, R-waves are produced by explosions, earthquakes,
and impacts of cosmic bodies on the planets. Seismic R-waves are used to probe the Earth’s crust and to study its
structure, and long R-waves are used to study the Earth’s mantle. Rayleigh waves produced by explosions contain
a significant fraction of the explosion energy, and at a certain distance from the epicenter, they dominate the other
seismic waves. They contain information on the energy source and the properties of the medium. For example,
records of R-waves from some underground nuclear explosions suggest that spall fracture of the medium occurs
at the epicenters of the explosions [2]. In [3], it is shown that during impacts of cosmic bodies on the Earth, the
focusing of R-waves in the antipode region (the region opposite to the site of impact) can lead to the formation of
unusual geological structures such as explosion pipes or diatremes.

Rayleigh waves produced by a point source in an elastic half-space were considered in [4–6]. Petrashen’ [7]
studied the Lamb problem for the case of an isotropic elastic sphere and obtained expressions for Rayleigh waves
on the surface of an elastic sphere. Onis’ko and Shemyakin [8] studied the movement of the ground surface for
an explosion in a half-space, and Alterman and Abramovici [9] explored the movement of the surface of an elastic
sphere for a contained explosion. Brekhovskikh [10] investigated Rayleigh waves produced by a harmonious source
and propagating along the curved surface of an elastic body. The present paper gives more detailed results for
Rayleigh waves on both the surface of an elastic half-space and inside it for explosions at a great depth. The
energy flux transferred by the Rayleigh wave is considered, and the fraction of the explosion energy converted into
the R-wave energy is estimated. Such data are required to obtain more exact estimates of the damage to various
engineering constructions from R-waves and describe the dynamic geological processes occurring in the regions that
are diametrically opposite to the site of impact of cosmic bodies on the surface of the planets [3].
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Fig. 1. Coordinate system, the positions of the wave fronts, and the control
surface (a cylinder of radius R0).

1. Wave Source. The seismic longitudinal P -wave produced by an underground nuclear explosion is
described in [11] using the elastic-displacement field potential containing three free parameters:

ϕ(t, R) = −Φ(∞)
R

f(τ). (1.1)

Here t � 0 is the time reckoned from the moment of the explosion, R > 0 is the distance to the center of
the explosion, Φ(∞)f(τ) is the reduced potential, Φ(∞) is the stationary value of the reduced potential, f(τ)
= 1 − e−τ (1 + τ + τ2/2 + τ3/6 − Bτ4) is a function of the source that produces the same seismic P -wave as
the underground explosion, τ = (t − R/cp)/t0 (t0 is the characteristic duration of wave generation and cp is the
propagation velocity of the longitudinal elastic waves), and B is a constant that depends on the properties of the
medium. The characteristic time t0 is related to the characteristic length cpt0, which for rock is approximately
equal to the radius of the crushing zone around the center of the explosion.

It should be noted that the approximating fourth-order polynomial contained in the source function provides
a satisfactory description of the potential in the near seismic region of the explosion. As shown in [12], at teleseismic
distances, the second-order polynomial is a more adequate approximation. In addition, for explosions at shallow
depths, at which spalling occurs at the explosion epicenter, the third-order polynomial [2] is more suitable. These
approximations can be obtained by discarding the corresponding terms of the polynomial and by selecting the
coefficient B for the higher-order term of the polynomial in the function f(τ). The energy Ep radiated to “infinity”
in the form of P -waves is defined by the formula [11]

Ep = πα(B)ρ0c
2
pκΦ(∞), (1.2)

where ρ0 is the density of the medium, α(B) = (5 + 3(1 + 24B)2)/64, and κ = Φ(∞)/(cpt0)3.
2. Rayleigh Wave. A point-source explosion in a homogeneous elastic medium generates a longitudinal-

type seismic wave (P -wave). The interaction of this wave with the free surface produces a surface seismic wave or
a Rayleigh wave.

Let us consider the movement that occurs in an elastic half-space subjected to the action of the source (1.1).
We introduce cylindrical coordinates Orϕz with the axis z directed into the interior of the medium and the axis r
along the free surface z = 0 (Fig. 1). The source is placed at the point (0, z0). The movement is assumed to be
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independent of the angular coordinate ϕ. From the initial time t = 0 to the moment the P -wave approaches the
free surface, the movement is described by the potential (1.1), which in dimensionless variables is written as

ϕ0(t, r, z) = −f(t−
√
r2 + (z0 − z)2 )/

√
r2 + (z0 − z)2 . (2.1)

Here the time t is in units of t0 and the distance is in units of cpt0. The potential (2.1) can be written as

ϕ0(t, r, z) = ϕ(t, R)/(κ(cpt0)2), R =
√
r2 + (z0 − z)2 .

From the time of the beginning of reflection of the P -waves from the free surface, the movement is described
by the potentials ϕ1 and ψ(0, ψ, 0), which are linked to the displacement field u by the relation

u = gradϕ1 + rotψ,

where ϕ1 = ϕ0 + ϕ. The potentials ϕ and ψ are found by solving the wave equations of elasticity theory

∂2ϕ

∂t2
= ∆ϕ,

1
γ2

∂2ψ

∂t2
= ∆ψ − ψ

r2
, t � z0, r � 0, z � 0 (2.2)

(∆ is the Laplacian and γ = cs/cp, where cs is the propagation velocity of the shear waves) for zero initial data and
zero stress vector on the free surface:

ϕ
∣
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∣
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∣
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2
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∂r ∂z
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∣
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.

Applying the Laplace transform with respect to t and the Fourier–Bessel transform with respect to r, we
obtain a solution of the problem (2.2), (2.3) in the form [6, 13]

ϕ(t, r, z) = ϕ0(t, r, z1) − ϕ0(t, r, z2) + ϕ1(t, r, z2),

ϕ0(t, r, z) = −f(t− ρ)/ρ, ρ = (r2 + z2)1/2, z1 = z − z0, z2 = z + z0,

ϕ1(t, r, z2) = γ

∞∫

0

kJ0(kr)
[ 1
2πi

∫

l

F (kγξ)X(ξ) e−kg1(ξ) dξ
]
dk, (2.4)

ψ(t, r, z2) = γ

∞∫

0

kJ1(kr)
[ 1
2πi

∫

l

F (kγξ)Y (ξ) e−kg2(ξ) dξ
]
dk,

where

X(ξ) = 8β/(δ2 − 4αβ), Y (ξ) = 4δ/(δ2 − 4αβ), g1(ξ) = αz2 − γξt, g2(ξ) = αz0 + βz − γξt,

α = (1 + γ2ξ2)1/2, β = (1 + ξ2)1/2, δ = 2 + ξ2, Reα > 0, Re β > 0 for ξ > 0,

F (kγξ) is the Laplace image of the source function f(t), J0 and J1 are Bessel functions, and l is the integration
contour in the Laplace transform inversion formula.

In (2.4), the integrands have the following singularities on the plane of the complex variable ξ: 1) the
branching points ξ1,2 = ±i/γ and ξ3,4 = ±i; 2) the pole ξ = 0; 3) the possible singularities of the function F (kγξ);
4) the poles ξR = ±iθ [0.874 � θ(γ) � 0.955].

The poles ξR are solutions of the Rayleigh equation δ2−4αδ = 0. Each singularity defines the corresponding
term in the general solution of the problem (2.2), (2.3). The branching points correspond to body waves. The pole
at the coordinate defines the asymptotics of the solution as t→ ∞, and the Rayleigh poles define the surface wave
as the asymptotics for r � cpt0 and t > ts (ts is the time of the shear wave arrives at the point considered).
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In the present paper, we study the motion in Rayleigh waves that is described by the formulas obtained
from (2.4) by finding the residues at the Rayleigh poles with subsequent integration over the parameter k. The
displacements, displacement rates, and stresses are expressed in terms of the potentials ϕ and ψ by the well-known
formulas of elasticity theory. The expressions for the displacements, displacement rates, and stresses in the Rayleigh
wave are given below.

The displacements are given by

u = urr1 + uzz1,

u(t, r, z) =

t−tp∫

0

Up(t− τ, r, z)f ′′(τ) dτ +

t−ts∫

0

Us(t− τ, r, z)f ′′(τ) dτ,

Up = Upr r1 + Upz z1, Us = Usr r1 + Uszz1, (2.5)

Upr =
4ab2

γθ3Θ
S10(r, az2, γθt)ε(t− tp), Usr = −2ab2d

γθ3Θ
S10(r, az0 + bz, γθt)ε(t− ts),

Upz =
4a2b2

γθ3Θ
S00(r, az2, γθt)ε(t− tp), Usz = − 2abd

γθ3Θ
S00(r, az0 + bz, γθt)ε(t− ts),

where r1 and z1 are unit vectors of the coordinate system, f ′′(τ) is the second derivative of the source function,
and ε(x) = 1 at x � 0 or ε(x) = 0 at x < 0.

The displacement rates are given by

v = vrr1 + vzz1,

v(t, r, z) =

t−tp∫

0

V p(t− τ, r, z)f ′′(τ) dτ +

t−ts∫

0

V s(t− τ, r, z)f ′′(τ) dτ,

V p = V pr r1 + V pz z1, V s = V sr r1 + V sz z1, (2.6)

V pr =
4ab2

θ2Θ
C11(r, az2, γθt)ε(t− tp), V sr = −2ab2d

θ2Θ
C11(r, az0 + bz, γθt)ε(t− ts),

V pz =
4a2b2

θ2Θ
C01(r, az2, γθt), ε(t− tp), V sz = −2abd

θ2Θ
C01(r, az0 + bz, γθt)ε(t− ts).

In (2.5) and (2.6), the following notation is used: a2 = 1−γ2θ2, b2 = 1−θ2, d = 2−θ2, Θ = abd−(a2+γ2b2),
θ(γ) is a solution of the Rayleigh equation d2 − 4ab = 0, tp =

√
r2 + (z0 + z)2, and ts are the times of arrival of the

reflected longitudinal and shear waves at the examined point of the medium. The value of ts can be found from the
relation

ts =
√
z2
0 + C2 +

√
(r − C)2 + z2/γ, (2.7)

where C is a positive solution of the equation

(r − C)
√
z2
0 + C2 − γC

√
(r − C)2 + z2 = 0, (2.8)

which is found by iterations:

C ≈ Cn = r(1 − αn) (n = 0, 1, 2, . . .),

α0 = 0, α1 =
γz

(r2 + z2
0 + z2)1/2

, . . . , αn =
γ(1 − αn−1)(α2

n−1r
2 + z2)1/2

[(1 − αn−1)2r2 + z2
0 + z2]1/2

.
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The stress tensor has the following nonzero components: σrr, σrz = σzr , σϕϕ, and σzz , where σik = σϕik+σψik
(i = r, ϕ, z; k = r, ϕ, z); σϕik and σψik are terms due to the potentials ϕ and ψ, respectively:

σϕrr =

t−tp∫

0

Σϕrr(t− τ, r, z)f ′′(τ) dτ, σψrr =

t−ts∫

0

Σψrr(t− τ, r, z)f ′′(τ) dτ,

σϕrz =

t−tp∫

0

Σϕrz(t− τ, r, z)f ′′′(τ) dτ, σψrz =

t−ts∫

0

Σψrz(t− τ, r, z)f ′′′(τ) dτ.

Here f ′′′(τ) is the third derivative of the source function, and

Σϕrr =
8γab2

θ3Θ

(2a2 + θ2

2
S01(r, az2, tγθ) − 1

r
S10(r, az2, tγθ)

)
ε(t− tp),

Σψrr = −4γab2d
θ3Θ

(
S01(r, az0 + bz, tγθ)− 1

r
S10(r, az0 + bz, tγθ)

)
ε(t− ts),

Σϕϕϕ =
8γab2

θ3Θ

(1 − 2γ2

2γ2
θ2S01(r, az2, tγθ) +

1
r
S10(r, az2, tγθ)

)
ε(t− tp),

Σψϕϕ = −4γab2d
θ3Θr

S10(r, az0 + bz, tγθ)ε(t− ts),

Σϕzz = −4γab2d
θ3Θ

S01(r, az2, tγθ)ε(t− tp), Σψzz =
4γab2d
θ3Θ

S01(r, az0 + bz, tγθ)ε(t− ts),

Σϕrz = −8γa2b2

θ3Θ
S11(r, az2, tγθ)ε(t− tp), Σψrz =

2γabd2

θ3Θ
S11(r, az0 + bz, tγθ)ε(t− ts).

Σϕrr =
8γab2

θ3Θ

(2a2 + θ2

2
S01(r, az2, tγθ) − 1

r
S10(r, az2, tγθ)

)
ε(t− tp),

Σψrr = −4γab2d
θ3Θ

(
S01(r, az0 + bz, tγθ)− 1

r
S10(r, az0 + bz, tγθ)

)
ε(t− ts),

Σϕϕϕ =
8γab2

θ3Θ

(1 − 2γ2

2γ2
θ2S01(r, az2, tγθ) +

1
r
S10(r, az2, tγθ)

)
ε(t− tp),

Σψϕϕ = −4γab2d
θ3Θr

S10(r, az0 + bz, tγθ)ε(t− ts),

Σϕzz = −4γab2d
θ3Θ

S01(r, az2, tγθ)ε(t− tp), Σψzz =
4γab2d
θ3Θ

S01(r, az0 + bz, tγθ)ε(t− ts),

Σϕrz = −8γa2b2

θ3Θ
S11(r, az2, tγθ)ε(t− tp), Σψrz =

2γabd2

θ3Θ
S11(r, az0 + bz, tγθ)ε(t− ts).

The functions Cmn(r, p, q) and Smn(r, p, q) of three arguments are the real and imaginary parts of the known
integrals

Cmn(r, p, q) + iSmn(r, p, q) =

∞∫

0

Jm(kr) e−k(p−iq) kn dk (m = 0, 1, n = 0, 1),
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TABLE 1

Explosion q,
kton

h,
m

ρ0,
kg/m3

cp,
m/sec

Φ(∞),
m3

B Φ1(∞),
m3/kton

cpt0,

m/kton1/3
z0

η,
%

1 2 3 4 5 6 7 8 9 10 11

Gnome 3.1
[15]

360
[16]

2200
[11]

4080
[11]

3120 [17]
2740 [11]

0.17
[11]

1040
895

82 4.4 7.0
6.0

Salmon 5.3
[18]

828
[18]

2240
[15]

4670
[19]

3700 [18, 19]
3770 [14]

0.06
[14]

700
719

57 14.4 3.2
3.3

which are expressed explicitly as

C00(r, p, q) = M/R, S00(r, p, q) = N/R,

C01(r, p, q) = (p(XM − Y N) + q(XN + YM))/R3,

S01(r, p, q) = (p(XN + YM) − q(XM − Y N))/R3,

C11(r, p, q) = r(XM − Y N)/R3, S11(r, p, q) = r(XN + YM)/R3,

C10(r, p, q) = (R − pM − qN)/(rR), S10(r, p, q) = (qM − pN)/(rR),

M2 = (R + |X |)/2, N2 = (R − |X |)/2, R2 = X2 + Y 2, X = r2 + p2 − q2, Y = 2qp.

3. Calculations of Motion in the R-wave. The motion in the R-wave is localized in a surface layer of
the medium whose thickness is on the order of the wavelength λ, from which the range of z is determined to be
0 � z � λ. As shown in [9], the R-wave length is close to the length of the P -wave generated by the source. From
formula (1.1) it follows that the dimensionless length of the P -wave is λ ≈ 10.

The displacements, displacement rates, and stresses in the medium due to R-wave propagation were calcu-
lated for explosions in rock salt since for this rock we know the parameters of the function of an elastic source that
forms the same P -wave as an underground explosion. The source parameters Φ(∞), cpt0, and B were calculated
in [11, 14] from the data of the Gnome (1961) and Salmon (1964) U.S. explosion tests. The initial data on the
explosion, the parameters of the medium, and seismic processes are given in columns 2–7 of Table 1. In column 2,
the explosion energy q is in kilotons of TNT equivalent, as is adopted in the papers cited (1 kton = 4.18 · 1012 J),
and the charge depth h is in meters. According to these data, the value of the parameter γ for rock salt is about 0.6.
Column 8 gives the values of the potential Φ1(∞) obtained using the data of columns 2, 3, and 6, column 9 gives
the characteristic scale cpt0, column 10 the relative depth of the explosion z0, and column 11 the explosion energy
η = Ep/E0 converted to the P -wave energy obtained from the data of column 6 (E0 the total explosion energy).

Thus, the source parameters and the amount of energy transferred to the P -wave depend on the charge
depth. This is obviously due to the effect of lithostatic pressure.

3.1. Displacements. Figure 2 gives curves of the displacement versus time at the points located at various
reduced depths 0 � z̄ � 10 [z̄ = z/(cpt0)]. The amplitude of the horizontal component ur has the largest value on
the free surface z̄ = 0. As the depth increases, it decreases linearly and changes sign at z̄ = zs. With a further
increase in the depth, the amplitude increases in the absolute value, reaches a maximum at a certain depth, and
then decreases monotonically. The surface z̄ = zs is at approximately the same level as in the case of a harmonic
R-wave of the same length:

zs ≈ − 1
4π

ln (
√

1 − γ2θ2
√

1 − θ2)
√

1 − γ2θ2 −√
1 − θ2

. (3.1)

For all possible values of γ ∈ (0, 1/
√

2 ), the boundary zs is in the interval 0.135 � zs � 0.250.
At the depth increases, the amplitude of the vertical displacement component uz first increases weakly,

reaches a certain maximum, and then decreases almost exponentially. In this case, the duration of particle oscilla-
tions increases and the amplitudes decrease. Thus, at z̄ = 10 (at a depth equal to the R-wave length), the duration
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Fig. 2. Horizontal (a) and vertical (b) displacement components versus time (r = 100 and z0 = 1)
for z̄ = 0 (1), 0.2 (2), 0.5 (3), 1 (4), 2 (5), 3 (6), 5 (7), and 10 (8).

of the oscillations increases by a factor of approximately three compared to the duration of the oscillations on the
free surface. The perturbation of the surface damps faster than that at the depth. The R-wave propagates in two
directions: along the free surface and into the depth. The amplitude along the free surface attenuates as r−1/2.

Figure 3 gives particle trajectories for the passage of the R-wave at various relative depths z̄ = z/λ. At z̄ = 0,
the trajectories are close in shape to ellipses whose major axes are oriented along the z axis. The particles rotate
counterclockwise. As the depth increases, the vertical component remains almost unchanged and the horizontal
component decreases linearly. At z̄ = 0.15–0.20, the horizontal component decreases to zero, after which it changes
sign and the rotation of the particles changes direction. At greater depths, they rotate clockwise. Thus, the surface
wave divides the near-surface layer of the elastic medium into two sublayers, in which the particles rotate in different
directions. At z̄ > 0.20, the amplitudes of both components decrease monotonically and rapidly. At a depth z̄ = 1,
the modulus of the displacement vector is almost an order of magnitude smaller than that on the free surface.

Qualitatively, the particle motion in the blast R-wave is similar to the motion in a harmonic wave. The
difference is that for the harmonic wave, the position of the boundary zs on which the direction of particle rotation
changes is defined by formula (3.1), whereas in the blast wave there is no distinct boundary is absent. The change
of particle rotation occurs gradually in the neighborhood of the value zs.

3.2. Stresses. Figure 4 gives curves of the stress amplitudes versus the reduced depth for the stress tensor
components σik, the shear stress intensity τi =

√
(σrr − σϕϕ)2 + (σϕϕ − σzz)2 + (σzz − σrr)2 + 6σ2

rz/3, and the
mean stress p = (σrr + σϕϕ + σzz)/3. From Fig. 4 it follows that the amplitudes of the stresses σrr, σϕϕ, τi, and
p have the largest values on the free surface and decrease monotonically as the depth increases. The amplitudes
of σzz and σrz reach the largest value at approximately the same depth at which there is a change in the direction
of particle rotation. The dependence τi(z) is more complex and has two extrema: a minimum near the free surface
and a maximum at z ≈ zs.

Figure 5 shows curves of τi(t) and p(t) for various reduced depths. In Fig. 5b, it is evident that the dependence
p(t) have three characteristic segments. When the R-wave arrives, the medium is extended on the first segment, is
compressed on the second segment, and is extended again on the third segment. The shear stress intensity varies
in synchrony with the variation in the mean stress. At the times the mean stresses reach extrema, the shear stress
intensity is also extremal. As the depth increases, the stress decreases rapidly. For example, at z̄ = 5, i.e., at a
depth equal to half the wavelength, the mean stress is approximately two orders of magnitude lower than that on
the free surface and τi decreases by a factor of nearly five.

From the calculations results, it follows that the dependences given above are qualitatively similar to the
dependences obtained for different values of γ (0 < γ < 1/

√
2).
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Fig. 3. Particle trajectories in the R-wave (r = 100) for z̄ = 0 (1). 0.02 (2), 0.04 (3), 0.08 (4),
0.10 (5), 0.12 (6), 0.15 (7), 0.20 (8), and 0.50 (9); the arrows show the direction of particle rotation.

4. Energy of the Blast Rayleigh Wave. The Rayleigh wave is formed at a certain some distance from
the epicenter of the explosion. Its formation and separation from the body-wave train occurs at a distance from the
epicenter equal to several wavelengths.

To find the explosion energy transferred to the R-wave, we consider the energy flux through a control surface
area S that bounds the explosion site and at a distance r � 3λ ≈ 30 from the epicenter. As such a surface, it is
convenient to use the surface of a semi-infinite round cylinder of radius r = R0 whose symmetry axis coincides with
the z axis and whose upper end coincides with the free surface. The rate of change in the energy contained in the
R-wave is equal to the energy flux through the surface S:

dER
dt

= −
∫

S

P · n dS = −
∫

Ss

P · n dS −
∫

Su

P · n dS −
∫

Sd

P · n dS.

Here Ss is the lateral area of the cylinder, Su and Sd are the surface areas of the top and bottom ends, respectively,
Pi = σikvk are the components of the Umov–Poynting vector, and n is the normal vector to the surface S.

The integral over Su is equal to zero by virtue of the boundary conditions on the free surface, and the
integral over Sd tends asymptotically to zero by virtue of the exponential decay of the motion in the R-wave at
great depths. The integral over Ss can be written as

dER
dt

= −2πR0

∞∫

0

(σrrvr + σzzvz)
∣
∣
∣
r=R0

dz = −2πR0

(
ε(t− tp)

zp∫

0

(σϕrrv
ϕ
r + σϕrzv

ϕ
z )

∣
∣
∣
r=R0

dz

+ ε(t− ts)

zs∫

0

[
(σϕrrv

ψ
r + σψrrv

ϕ
r + σψrrv

ψ
r ) + (σϕrzv

ψ
z + σψrzv

ϕ
z + σψrzv

ψ
z )

]∣∣
∣
r=R0

dz
)
. (4.1)
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0.2 (3), 0.5 (4), 3 (5), and 5 (6).

Here the upper limits of integration zp and zs are the coordinates of the point of intersection of the fronts of the
reflected PP - and PS-waves with the generatrix of the cylinder r = R0 (see Fig. 1). For the specified time t, we
have zp =

√
t2 −R2

0 − z0, and the value of zs is found by solving the system of equations
√
z2
0 + C2 +

√
(R0 − C)2 + z2

s/γ = t,

(R0 − C)
√
z2
0 + C2 − γC

√
(R0 − C)2 + z2

s = 0.

The energy concentrated in the Rayleigh wave is obtained by integrating expression (4.1) over time:

ER = −
∞∫

0

∫

S

P · n dS dt = κ
2(cpt0)3ρc2pεR (4.2)
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TABLE 2

z0 ER B Ep/E0, % ER/Ep, % ER/E0, %

1.0 0.500 0.21 8.75 10.0 0.880
2.0 0.230 0.20 7.70 5.0 0.380
3.0 0.145 0.18 7.20 3.6 0.260
4.4 0.095 0.17 6.50 2.4 0.160
5.0 0.085 0.16 6.30 2.3 0.145

10.0 0.037 0.11 4.45 2.2 0.076
14.4 0.0245 0.06 3.25 2.1 0.700

(εR is the R-wave energy in dimensionless form). It should be noted that the value of εR does not depend on the
radius R0 of the control cylinder. Using (4.2) and (1.2), we obtain

ER
E0

=
EpεR

E0πα(B)
.

The energy concentrated in the Rayleigh wave depends on the depth of the source, which in the calculations
was varied in the range of z0 ∈ (1; 14.4). The value z0 = 1 is close to the contained-explosion depth. An explosion
at a depth z0 � 1 produces spalls of the ground. In this case, the elastic model is inappropriate.

To calculate the energy of the R-wave by formula (4.2), one needs to know the dependences of the energy
of the P -wave and the parameter B in the expression for the source function (1.1) on the charge depth. For rock
salt at z0 = 4.4 and 14.4, they can be found from experimental data on the Gnome and Salmon explosions (see
Table 1), which were approximated by a linear dependence on z0 for B and an exponential dependence on z0 for
η = Ep/E0:

B = 0.22 − 0.011z0, η = 0.088 exp (−0.0695z0), 1 � z0 � 14.4. (4.3)

The expression for η was chosen such that it yielded the average values of η given in Table 1.
The results of calculations using relation (4.3) are given in Table 2 (the calculations were performed for a

control cylinder of radius R0 = 100). The fourth and seventh columns (z0 = 4.4 and 14.4) give data obtained for
the Gnome and Salmon explosions, respectively. From Table 2 it follows that for z0 ≈ 1, about 1% of the explosion
energy is converted to the R-wave energy. As the explosion depth increases, the fraction of the energy transferred
to the R-wave decreases. The minimum charge depth at which the explosion can still be considered a contained one
is h̄ = 30 m/kton1/3 [20]. An extrapolation of the data of Table 2 to this depth shows that the energy expended in
the formation of the R-wave is about 30% of the energy of the P -wave or approximately 3% of the explosion energy.

The energy of the R-wave was also estimated for the case of an explosion in granite using the data of the
Hardhat U.S. test (1962). The energy of this explosion was q = 5 ktons [20]. The value of B = 0.24 is taken
from [11], and cpt0 = 68 m/kton1/3 from [20]. In this case, z0 = 4.42 and γ = 0.6. The fraction of the energy
transferred to the R-wave was about 0.5%.

It should be noted that for shallow charge depths, at which spalling and ground excavation occur, the
procedure described above provides only estimates for the R-wave energy. For such depth, it is necessary to use
more accurate expressions for the source function than relation (1.1).

Conclusions. The solution obtained describes the motion of material in seismic Rayleigh waves produced
by explosions both on the surface and in the bulk. Trends in the variation of the displacements and stresses with
depth and their dependences on the explosion yield and depth were obtained. The fraction of the energy that
passes into the Rayleigh wave during explosion was determined. It can be considerable (up to several percent) for
near-surface explosions in rocks. For explosions at greater depths, this fraction decreases almost linearly as the
depth increases.

The solution obtained is useful for the estimation of the seismic effect on engineering facilities from strong
explosions and high-velocity impacts of cosmic bodies on the Earth. In addition, it provides a more accurate
description of the fracture pattern and the formation of explosion pipes in the antipode regions under impacts of
cosmic bodies on the surface of solid planets.
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